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Abstract  This study investigates the propagation 
of rarefaction solitary waves in one-dimensional, 
tensegrity-like mass-spring lattices that are subject 
to an initial state of pre-compression. The analyzed 
systems exhibit a cubic interaction potential between 
adjacent masses that accurately captures the consti-
tutive response of tensegrity prisms with elastically 
softening behavior. Analytical results are presented 
for the propagation of rarefaction solitary waves that 
produce a reduction of the initial prestress exhibited 
by the system. It is known in the literature that the 
use of cubic interaction potentials in one-dimensional 
lattices enables the prediction of the propagation of 
solitary waves with sech2 profile. Investigating the 
particular case of pre-compressed, softening-type 
tensegrity lattices, this study shows that such a notice-
able result can be derived using both the classical and 
the improved Boussinesq equation. The given results 
reveal the presence of rarefaction solitary waves in a 
suitable range of wave speeds, and offer an explicit 
formula for the upper bound of the rarefaction wave 
speed that leaves the system in a compressed state. 
The outcomes of the present work pave the way to the 

development of analytic models for the design of rad-
ically new, metamaterial-type impact protection sys-
tems. Numerical simulations show the ability of the 
tensegrity-like model in predicting the propagation 
of rarefaction solitary waves in a physical model of a 
tensegrity mass-spring chain.
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1  Introduction

Solitary waves are pulses that travel in localized 
regions of space while maintaining a permanent form 
[1–3]. In the field of solid mechanics, such waves 
have been proved to exist in different media, such as 
continuum isotropic and anisotropic materials [4, 5], 
mechanical metamaterials [6, 7], and granular chains 
[8, 9]. While systems with a stiffening-type response 
have been demonstrated to support compression soli-
tary waves under impact loading [2, 8], systems with 
a softening-type response are able to convert initially 
compressive impact loading into solitary rarefaction 
waves [6, 8, 10]. It is worth noting that the use of 
solitary wave dynamics has been proposed to design 
innovative acoustic applications of tensegrity struc-
tures, including next generation actuators and sen-
sors, impact mitigation systems and adjustable focus 
acoustic lenses [11]. The use of tensegrity modules as 
unit cells of mechanical metamaterials has indeed led 
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to the design of novel devices supporting localized 
solitary waves under impact loading [12–14], in addi-
tion to tunable bandgap systems [15–18].

The present work deals with an analytic study 
of the solitary wave dynamics of one-dimensional 
chains formed by lumped masses alternating with 
externally pre-compressed minimal regular tensegrity 
prisms [19] (‘T3 units’). Due to the complex behav-
ior of the force versus displacement response of such 
units [20], it is not easy to obtain analytic results for 
the wave propagation problem in tensegrity metama-
terials. The use of a ‘tensegrity-like’ potential, able to 
suitably mimic the nature of the force-displacement 
exhibited by the real unit cell, has been shown to 
be a good option to analytically study the propaga-
tion of compression solitary waves. Such a study has 
been conducted with reference to lattices formed by 
tensegrity prisms [13] and truncated tensegrity octa-
hedrons [14], which exhibit an elastically harden-
ing response. However, the tensegrity-like approach 
has not yet been applied to tensegrity lattices that 
exhibit an elastically-softening behavior. This paper 
aims to fill such a gap by employing the well-known 
Fermi–Pasta–Ulam (FPU) cubic interaction poten-
tial [21], previously widely employed to analyze the 
propagation of solitary waves in lattice structures of 
different type (refer, e.g., to [22–24] and references 
therein). The FPU potential is shown to effectively 
capture the constitutive response of softening-type 
T3 prisms under compression loading. Its use leads 
to analytically prove, for the first time, that chains 
formed by such units support dark solitary waves 
with a sech2 shape. This important result can be found 
using both the classical Boussinesq wave equation 

(for weakly non-linear systems) or an improved ver-
sion of the same equation, derived by Rosenau [1].

The paper is organized as follows. Section  2 
describes the mechanical response of the analyzed 
tensegrity units, while 3 illustrates the fitting of the 
FPU interaction potential to experimental and numer-
ical data concerned with the compression loading of 
T3 prisms. An analytic study of the solitary pulses 
that are supported by mass-spring systems formed by 
these systems is presented in Sect. 4. Section 5 illus-
trates comparisons between the theoretical predic-
tions of 4 and the numerical results presented in [6]. 
Concluding remarks and directions for future research 
are finally presented in 6.

2 � Tensegrity prisms with softening response

Let us consider the T3 prisms shown in Fig.  1a, 
whose bases are connected to lumped masses formed 
by massive circular discs. We assume that the nodes 
of prisms are free to slide tangentially against the 
terminal discs, so as that the twisting motion of the 
prisms is not transferred to the lumped masses. Here-
after, we will use the symbols p0 , h0 , d, m, b̄ , db , �̄  , s̄v , 
ds and 𝜗̄ to denote the (internal) pre-strain of the base 
strings, the initial (undeformed) height of the unit cell 
(under zero external force), the thickness of the mas-
sive discs, the mass of the discs, the rest length of the 
bars on the natural configuration, the diameter of the 
bars, the rest length of the base strings on the natural 
configuration, the rest length of the cross strings on 
the natural configuration, the diameter of the strings 

Fig. 1   Illustration of the 
unloaded (a) and pre-com-
pressed (b) configurations 
of a T3 prism connected to 
lumped masses
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and the initial twisting angle of the terminal bases, 
respectively.

Let now h denote the height of the unit cell in the 
current (deformed) configuration, which is given by 
h = h0 − û , where û is the relative axial displace-
ment of the bases of the prism. The displacement û is 
produced by the action two compression forces F̂tens 
applied to the centers of mass of such bases, and we 
can assume that the tensegrity unit is subject to an 
initial pre-compression force F0 , which prodduces the 
initial displacement û = u0 , and the pre-compression 
strain �0 = u0∕h0 (Fig. 1b). We further introduce the 
quantities u = û − u0 and Ftens = F̂tens − F0 , and we 
let h�0 = h0 − u0 denote the height of the prism under 
the action of the force F0 . All the forces and displace-
ments will be assumed to be positive in compression 
in the remainder of the paper.

Previous experimental and mechanical studies 
have shown that T3 prisms exhibit an elastically-sof-
tening response for suitable values of the geometrical 

and prestress variable. In particular, the experimen-
tal study illustrated in [20] shows the achievement 
of such a regime in a macro-scale T3 prism equipped 
with the properties listed in Table  1, which we will 
refer to as unit #1. Such a system employs zinc plated 
steel bars with Young’s modulus of 203.53 GPa and 
Spectra cables for the strings (Young modulus 5.48 
MPa). The experimental axial force versus axial 
displacement response of this unit is illustrated in 
Fig. 2a, which exhibits a slope progressively decreas-
ing with increasing values of û , i.e., an elastically-sof-
tening behavior.

A numerical study on the response of a millimeter-
scale T3 prism, which shows the proprieties listed in 
Table 2 (hereafter referred to as T3 units #2), has been 
presented in [6], observing the occurrence of a soften-
ing-type response also in this micro-scale system (see 
Fig.  2b). The bars of the unit #2 can be 3D-printed 
making use of electron beam melting and the Ti6Al4V 
titanium alloy (Young modulus 120 MPa), while the 

Fig. 2   Experimental force-displacement response of the T3 unit #1 under compression loading [20] (a) and numerical force-dis-
placement response of the T3 unit # 2 [6] (b)

Table 1   Geometrical and 
mechanical properties of 
the T3 unit # 1 [20]

p
0

h
0 b̄ db �̄ s̄v ds 𝜗̄

% (mm) (mm) (mm) (mm) (mm) (mm) (deg)

7 74 174 6.83 132 80 0.76 150

Table 2   Geometrical and 
mechanical properties of 
the T3 unit #2 [6]

p
0

h
0 b̄ db �̄ s̄v ds d m 𝜗̄

% (mm) (mm) (mm) (mm) (mm) (mm) (mm) (g) (deg)

4 7.63 11.50 0.80 8.70 6.00 0.28 2.00 25 150
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strings are again assumed to be made of Spectra cables, 
as in the case of unit # 1.

3 � Cubic tensegrity‑like interaction potential

The present section analyzes the use of the FPU cubic 
interaction potential defined by the following equation, 
with the aim of describing the response of the T3 units 
illustrated in the previous section

where 𝛼̂1 and 𝛼̂2 are constitutive parameters. Such a 
classical potential has been often used for the devel-
opment of weakly non-linear theories of lattice struc-
tures (see, e.g., [21–24] and references therein). Using 
the index notation for the derivatives with respect to 
û , it is easy to obtain the force F̂ versus displacement 
û law corresponding to the FPU cubic model in the 
form

and for the stiffness coefficient the expression

Equations  (1)–(3) are employed in this work to 
develop a tensegrity-like model of the axial response 
of softening-type T3 tensegrity units from the natu-
ral (stress-free) state. The incremental response 
from the pre-compressed state will be instead 
described by the potential V(u), the incremental force 
F(u) = F̂(u + u0) − F0 and the incremental stiffness 
k(u) defined as follows

where

Figure 3a, b, c graphically illustrate the V versus u, F 
versus u and k versus u laws, which are derived from 
Eq.  (4) for given values of the constitutive parame-
ters �1 and �2 . It is easily observed that the response 
laws defined by the blue and green curves describe a 
system with elastically-stiffening behavior ( 𝛼1 > 0 , 

(1)V̂(û) =
1

2
𝛼̂1 û

2 +
1

3
𝛼̂2 û

3,

(2)F̂(û) = Vû = 𝛼̂1 û + 𝛼̂2 û
2

(3)k̂(û) = Vûû = 𝛼̂1 + 2 𝛼̂2 û

(4)V(u) =
1

2
𝛼1 u

2 +
1

3
𝛼2 u

3, F(u) = 𝛼1 u + 𝛼̂2 u
2, k(u) = 𝛼1 + 2 𝛼2u

(5)𝛼1 = 𝛼̂1 + 2 𝛼̂2 𝜖0 h0, 𝛼2 = 𝛼̂2

𝛼2 > 0 ), while the red curves describe a system with 
elastically-softening response ( 𝛼1 > 0 , 𝛼2 < 0 ), which 
is of interest for the present research.

We now fit the cubic FPU model (4) to the responses 
of unit #1 (Fig. 2a) and unit #2 (Fig. 2b) described in 
the previous section. We obtain the best fit parameters 
𝛼̂1 = 17.0371 N/mm and 𝛼̂2 = −0.274523 N/mm2 with 
a coefficient of determination R2 = 0.998805 , using a 
dataset with 110 points for the response in Fig. 2a, and 
the MathematicaⓇ function ‘LinearModelFit’. Such a 
fitting procedure demonstrates that the cubic tensegrity-
like model very well describes the observed experimen-
tal response of a softening-type T3 prism (see Fig. 4a, 
where the symbol F̂tens marks the experimental data 
and the symbol F̂ marks the tensegrity-like model).

Moving on to fit the tensegrity-like model to the 
response of unit #2, we employed a discretization with 
51 points of the force-displacement curve illustrated in 
Fig.  2b and the MathematicaⓇ function ‘LinearMod-
elFit’ to obtain the best fit parameters 𝛼̂1 = 36.5921 N/
mm and 𝛼̂2 = −7.14109 N/mm2 ( R2 = 0.999981 ) (cf. 
Fig.  4b). The application of a pre-compression strain 
�0 = 0.15 and the use of Eq.  (5) leads us to obtain 
�1 = 20.2462 N/mm and �2 = −7.14109 N/mm2 for 
the tensegrity-like model of the incremental response 
from the pre-compressed state, which is defined by Eq. 
(4).

4 � The dark solitary wave

The Hamiltonian of a tensegrity mass-spring chain 
composed of n T3 prisms with a softening-type elas-
tic response can be expressed as follows. We define x 
as the abscissa along the pre-compressed configura-

tion of the chain, which we take as our reference. The 
symbols xi and wi represent the abscissa and the axial 
displacement of the i-th unit, respectively. By defining 
ui = wi−1 − wi , the Hamiltonian of the system is given 
by

H =

n−1∑

i=1

[
1

2
m

(
dwi

dt

)2

+ V
(
wi+1 − wi

)
]
,
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Fig. 3   V versus u (a), F versus u (b) and k versus u (c) laws for selected values of the constitutive parameters �
1
 and �

2

Fig. 4   Fitting of the tensegrity-like model (red curves) to the 
experimental response given in [20] for unit #1 (blue points) 
(a) and numerical prediction of the response of unit #2 given 

in [6] (blue points) (b). The remarkable fitting in (b) is due to 
the fact that the numerical data are obtained via an incremental 
algorithm (Color figure online)
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where V is the interaction potential, and m is the mass 
of the single unit. The equation of motion of the i-th 
unit reads

We now write ui as the realization of a continu-
ous function u(x,  t) in correspondence to the current 
time t and the initial position xi the i-th mass (i.e., 
ui = u(xi, t) ). Next, we use a discrete-to-continuum 
approach similar to that presented in  [1, 25], which 
leads us to turn Eq. (6) into the following continuous 
equation

where h�0 is the equilibrium distance, and the differ-
ential operator L ≈ 1 +

1

12
h2
�0
�xx takes into account 

the discreteness of the system under examination.
Two possible approaches can be employed to fur-

ther manipulate Eq. (7). One available possibility is to 
employ the standard quasi-continuum approach fol-
lowed in [13, 14] for stiffening-type systems (weakly 
non-linear approach). By considering 𝜖 << 1 and 
u ∼ �u , such an approach requires a the Taylor expan-
sion of the real F(u) in Eq. (4) in order to neglect 
terms of order greater than O(�3h2

�0
 ). In the present 

case, such an expansion is actually not needed, since 
we are employing a cubic interaction potential. There-
fore we are led directly to obtain the classical Bouss-
inesq equation

The second approach consists of using Rosenau’s [1] 
idea to invert the operator L , obtaining

Applying such an operator to the linear term utt leads 
us, after some standard manipulations, to the follow-
ing improved Boussinesq equation [1]

(6)m
d2ui

dt2
= Vu

(
ui+1

)
− 2Vu

(
ui
)
+ Vu

(
ui−1

)

(7)
m

h2
�0

utt = L{[Vu(u(x, t))]xx},

(8)
m

h2
�0

utt = �1uxx + �2(u
2)xx +

1

12
h2
�0
�1uxxxx.

L
−1 ≈

(
1 −

1

12
h2
�0
�xx

)

(9)
m

h2
�0

utt = �1uxx + �2(u
2)xx +

1

12
muxxtt.

It is worth noting that the speed for linear longitudi-
nal waves ( c

�
 ) is the same for Eqs. (8) and (9), being 

given by

Nevertheless, the dispersion equation arising when 
we consider the fourth order derivative term is differ-
ent for the two approaches under examination. Intro-
ducing the dimensionless unknown � = u∕h�0 and the 
independent dimensionless variables � = t∕T  and 
� = x∕h�0 where T is a characteristic time and h�0 is a 
characteristic length, we rewrite the above differential 
equations as follows

and

Here, we have set

and

For these equations we are interested in finding a 
traveling pulse of the form � = �(� − v�) . Using such 
an ansatz, it is well known that the pulse solution for 
both (10) and (11) takes the form [22]

where in both cases the amplitude A is given by

while the coefficient B is computed as follows for Eq. 
(10)

and in the form

c2
�
= h2

�0

�1

m

(10)��� = ��� + �(�2)�� + ������ ,

(11)��� = ��� + �(�2)�� + ������ .

h2
�0

T2
= c2

�

� =
�2h�0

�1
, � =

1

12

(12)�(�, �) = A sech
2
[
B(� − v�) + c0

]
,

(13)A =
3

2

v2 − 1

�
,

(14)B2 =
v2 − 1

4�
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for Eq. (11). Therefore, in both cases, the pulses sup-
ported by the tensegrity-like model under considera-
tion are supersonic and ‘dark’ [26], since the assump-
tion of softening-type response implies 𝛽 < 0 (cf. 
Section 2). Restricting our analysis to cases in which 
the lattice remains under a nonzero level of com-
pression, while rarefaction pulses propagate along 
the longitudinal axis, we must impose the constraint 
|A| ≤ |u0∕h�0 | . Using Eq. (13), such a condition 
implies that the traveling pulse must show a traveling 
speed not larger than the following limiting value

Equation (12) allows us to give a simple and effec-
tive mathematical formulation to dark solitary waves 
in tensegrity lattice structures that exhibit softening-
type response. It is worth noting that such waves have 
a shape similar to that exhibited by the depression 
solitary waves presented in [27] for the Korteweg-de 
Vries wave equation in the subsonic regime. Moreo-
ver, we observe that Eq. (12) provides an accurate 
approximation to the rarefaction solitary pulses 
obtained by Herbold and Nesterenko in [10]. Figure 5 
shows a comparison between the pulse illustrated in 
Fig. 3 of such a reference, for a lattice endowed with 
a power-lave interaction potential featuring an expo-
nent n = 1∕2 , and a sech2 pulse with −A = �0 = 0.033 

(15)B2 =
v2 − 1

4�v2
.

(16)cmax = c
�

√
2

3

� u0

h�0

+ 1

and B = 0.85 . The vertical axis gives the total strain 
𝜖 = û∕h0 = 𝜖 + 𝜖0(1 − 𝜖) . A rather good matching 
between the profiles of such pulses can be observed 
in Fig. 5.

5 � Comparisons with previous numerical studies

We study in the present section the continuum limit 
of a chain of T3 units #2 that features a pre-compres-
sion strain �0 = 0.15 . It is useful to establish a com-
parison between the predictions of a tensegrity-like 
approach to the wave dynamics of such a system, 
and the numerical results presented in Table  S2 of 
[6] for a mass-spring chain consisting of 1400 prisms 
equipped with the properties listed in Table  2. Fig-
ure 3 of Ref. [6] graphically illustrates the propaga-
tion of rarefaction pulses in the tensegrity chain under 
consideration, which are produced by the applica-
tion of an initial compression disturbance at one end 
of the chain. Such rarefaction pulses are followed by 
oscillatory tails that progressively shrink in amplitude 
during the propagation of the leading pulses.

We now compare the shape and speed of the rar-
efaction pulses predicted by the tensegrity-like the-
ory presented in the previous section, which make 
use of Eq. (12)–(15) and the constitutive parameters 
given in Sect.  3, with the numerical results pre-
sented in [6]. It is useful to compare ‘theoretical’ 
and ‘numerical’ rarefaction waves with equal peak 
amplitudes, with the aim of assessing the ability of 

Fig. 5   Comparison 
between the sech2 pulses 
predicted by the tensegrity-
like approach and the 
profiles of the solitary 
pulses analyzed in [10], for 
�
0
= 0.033
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the tensegrity-like approach in predicting the wave 
speed and the wave width of the rarefaction pulses 
(see Table  3). The wave widths corresponding to 
the Boussinesq Equation (BE: Eq. (10)) and the 
Improved Boussinesq Equation (IBE: Eq. (11)) were 
computed assuming a cutoff of 𝜖 equal to 0.02 �0 . 
The results illustrated in Table 3 highlight a rather 
good matching between theoretical and numerical 
results. One notes, in particular, that the wave width 
reduces with increasing values of the wave speed, 
in both the analyzed models. It is also observed that 
the IBE model predicts slightly larger wave widths 
as compared to the BE model. The waveform of the 
tensegrity-like pulses is shown in Fig.  6 for differ-
ent wave speeds c = v c

�
 , which range from a value 

close to the sound speed for linear longitudinal 
waves ( 1.02 c

�
 ), up to cmax ( 1.13 c�).

6 � Concluding remarks

This work has investigated the existence and the 
properties of rarefaction pulses propagating through 
tensegrity-like mass-spring chains subject to an initial 
pre-compression, which are equipped with a cubic 
FPU interaction potential. The latter proved to accu-
rately capture the constitutive response of T3 tenseg-
rity prisms featuring a softening-type response under 
compression loading [6, 20]. Two analytical models 
have been proposed to predict the propagation of rar-
efaction solitary pulses in the examined tensegrity-
like mass-spring chains, making use of the classical 
Boussinesq wave equation, and an improved version 
of such an equation proposed by Rosenau [1]. Ana-
lytic formulae have been provided for the shape and 
the propagation speed of the above pulses, which pro-
duce a reduction of the initial state of pre-compres-
sion of the system. Interestingly, the presented results 

Table 3   Comparison 
between theoretical and 
numerical results for the 
propagation of rarefaction 
pulses in a tensegrity mass-
spring chain with softening 
response

Peak amplitude 
A + �

0
(1 − A)

Wave speed Wave width

0.122 Boussinesq equation 1.02 c
�

9.18
Improved Boussinesq equation 9.41
Reference [6] 1.00 c

�
12.00

0.040 Boussinesq equation 1.09 c
�

6.46
Improved Boussinesq equation 7.07
Reference [6] 1.08 c

�
10.00

0 Boussinesq equation 1.13 c
�

5.89
Improved Boussinesq equation 6.63

Fig. 6   Profiles of the soli-
tary pulses traveling with 
different speeds through a 
chain formed by lumped 
masses and the T3 units #2, 
for �

0
= 0.15
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closely approximate those obtained for the dark soli-
tary pulses studied in [10], and the numerical results 
presented in [6] for a micro-scale tensegrity mass-
spring chain with softening response.

We address studies dealing with the stability 
properties of rarefaction solitary waves propagating 
in tensegrity lattices to future work [28, 29]. Addi-
tional lines of future research will include the study 
of mechanical metamaterial applications of the stud-
ied behaviors, with the aim of developing innovative 
bandgap systems [5, 17], and ground-breaking impact 
protection devices that are able to transform impul-
sive compression loading into rarefaction waves. A 
tensegrity structure will be used to redirect energy 
from an incident shock into a compact-support rar-
efaction wave, characterized by a gradually dimin-
ishing oscillatory tail. This effect will be achieved 
through a softening-type geometric nonlinearity, 
which will be adjusted using local and global pre-
stress [6]. Future studies will involve the mechani-
cal modeling of a composite system, consisting of 
a tensegrity lattice embedded in a matrix material, 
which acts as a porous medium [30]. Additionally, we 
plan to investigate the incorporation of inertial effects 
into tensegrity-like systems, aiming to achieve band-
gap effects at low frequencies [31].
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